
2/8/06 Blackhat Federal 2006 1

How to Sandbox IIS Automatically
without 0 False Positive and Negative

Professor Tzi-cker Chiueh

Computer Science Department

Stony Brook University

chiueh@cs.sunysb.edu

2/8/06 Blackhat Federal 2006 2

Big Picture
 Ways to get malicious code/data into victim sites

(1) Break cryptography

(2) Exploit design flaws in security protocols

(3) Leverage applications’ convenience features

(4) Exploit application-level implementation bugs

(5) Exploit language-level implementation bugs

(6) Non-technical attacks: insider, social engineering, etc.

 The majority of attacks are based on (3), (4) and (5)

2/8/06 Blackhat Federal 2006 3

Software Security

 Bugs in programs lead to vulnerabilities that
attackers exploit

 Design vs. Implementation bugs

 How to detect security-related bugs
 Static analysis

 Dynamic checking

 Intrusion detection/prevention

2/8/06 Blackhat Federal 2006 4

Control- Hijacking Attacks
 Network applications whose control gets hijacked because

of software bugs: Most worms, including MS Blast, exploit
such vulnerabilities

 Three-step recipe:
 Insert malicious code/data into the victim application

Sneaking weapons into a plane

 Trick the attacked application to transfer control to the inserted
code or some existing code

Taking over the victim plane

 Execute damaging system calls as the owner of the attacked
application process

Hit a target with the hijacked plane

2/8/06 Blackhat Federal 2006 5

Control-Hijacking Attack

 Three types of overflows:
 buffer overflow

 integer overflow

 input argument list overflow (format string attack)

 Consequences
 Code Injection

 Return-to-libc

 Data attack

2/8/06 Blackhat Federal 2006 6

Example: Stack Overflow Attack

 main() {

 input();

}

 input() {

 int i = 0;;

 int userID[5];

 while ((scanf(“%d”, &(userID[I]))) != EOF)

 i ++;

 }

STACK LAYOUT

FP 124 Return address of input() 100

 120 Local variable i

 116 userID[4]

 112 userID[3]

 108 userID[2] INT 80

 104 userID[1]

SP 100 userID[0]

2/8/06 Blackhat Federal 2006 7

Proposed Defenses

Stop the attack at either of the three steps:
 Overflowing some data structures

 Bounds checking compiler, e.g., CASH (world’s fastest array
bound checking compiler on Linux/X86 platform)

 Triggering control transfer

 Branch target check, e.g., FOOD (Foreign code detection on
Windows/X86 platform)

 Issuing damaging system calls

 System call pattern check, e.g., PAID

2/8/06 Blackhat Federal 2006 8

Program semantics-Aware Intrusion
Detection (PAID)

 As a last line of defense, prevent intruders from
causing damages even when they successfully take
control of a target victim application

 Key observation: Most damages can only be done
through system calls, including denial of service
attacks

 Idea: Prevent a hijacked application from issuing
system calls that deviate from its semantic model

2/8/06 Blackhat Federal 2006 9

System Call Model Checking

 Achilles Heel: How to derive a system call model for an
arbitrary application?
 Manual specification: error-prone, labor intensive, non-scalable

 Machine learning: error-prone, training efforts required

 PAID’s approach: Use compiler to extract the sites and
ordering of system calls from the source code of any given
application automatically
 Guarantees zero false positives and very-close-to-zero false

negatives

 System call policy is extracted automatically and accurately

2/8/06 Blackhat Federal 2006 10

PAID Architecture

ApplicationApplication

Compiler

System Call
 Graph

System Call
 Graph

Legitimacy
 Check

User

Kernel

Compile Time
Extraction Run Time Checking

2/8/06 Blackhat Federal 2006 11

System Call Flow Graph

 Take a program’s control flow graph, and
eliminate all nodes that are not related to system
calls

 Traverse the SCFG at run time to verify the
legitimacy of every incoming system call

 Non-determinism:
 If-then-else statements

 Function with multiple call sites

2/8/06 Blackhat Federal 2006 12

System Call Instance Coordinate

 Each system call instance is uniquely identified by
 The sequence of return addresses used in the function

call chain leading to the corresponding “int 80”
instruction

 The return address of the “int 80” instruction itself

 Example:

 Main F1 F2 F4 system_call_1 vs.

 Main F3 F5 F4 system_call_1

2/8/06 Blackhat Federal 2006 13

System Call Flow Graph Traversal

 Is there a path from the previous system call
instance (R1, R2, R3, … Rn) to the current system
call instance (S1, S2, S3, … Sm)?

 Largely deterministic low latency

2/8/06 Blackhat Federal 2006 14

Dynamic Branch Targets

 Not all branch targets are known at compile time:
function pointers and indirect jumps

 Insert a notify system call to tell the kernel the
target address of these indirect branch instructions

 The kernel moves the current cursor of the system
call graph to the designated target accordingly

 Notify system call is itself protected

2/8/06 Blackhat Federal 2006 15

Asynchronous Control Transfer

 Setjmp/Longjmp
 At the time of setjmp(), store the current cursor

 At the time of longjmp(), restore the current cursor

 Signal handler
 When signal is delivered, store the current cursor

 After signal handler is done, restore the current cursor

 Dynamically linked library such as dlopen()
 Load the library’s system call graph at run time

2/8/06 Blackhat Federal 2006 16

Mimicry Attack

 Hijack the control of a victim application by over-
writing some control-sensitive data structure, such
as return address

 Issue a legitimate sequence of system calls after
the hijack point to fool the IDS until reaching a
desired system call, e.g., exec()

 None of existing commercial host-based IDS can
handle mimicry attacks

2/8/06 Blackhat Federal 2006 17

Mimicry Attack Example

 Legitimate sequence:
open() read() receive() send()
exec()

 Buffer overflow vulnerability exists between
open() and read()
 Hijack the program’s control between open() and read()
 Execute read() receive() send() exec()

2/8/06 Blackhat Federal 2006 18

Mimicry Attack Details
 To mount a mimicry attack, attacker needs to

 Issue each intermediate system call without being
detected

 Nearly all system calls can be turned into no-ops
 For example (void) getpid() or open(NULL,0)

 Grab the control back after each intermediate system call

 Set up the stack so that the injected code can take control after each
system call invocation

2/8/06 Blackhat Federal 2006 19

Countermeasures

 Minimize non-determinism in the system call
model
 If (a>1) { open(..)} else {open(..); write(..)}

 Checking system call argument values whenever
possible

 Random insertion of null system calls at load time
to defeat guessing
 Different SCFGs for different instances of the same

program

2/8/06 Blackhat Federal 2006 20

Impossible Path Example

Entry(main)

call(foo)

return(foo)

call(foo)

return(foo)

Exit()

Exit(main)

Entry(foo)

sys_foo

sys_foo

Exit(foo)

main()
{

foo(); % W
foo(); % X
exit(); % E

}

foo()
{

for(….){
sys_foo(); % Y

 sys_foo(); % Z
}

}

1

2
3

4

2/8/06 Blackhat Federal 2006 21

With PAID

 Legitimate Path:
WY WZ XY XZ E

 Impossible Path:
WY WZ E

2/8/06 Blackhat Federal 2006 22

PAID Checks
 Ordering

 Site: return address sequence

 Arguments

 Checking performed in the kernel with SCFG
stored in the user space

2/8/06 Blackhat Federal 2006 23

System Call Argument Check

 Start from each “file name” system call argument, e.g.,
open() and exec(), and compute a backward slice
towards the “inputs”

 Perform symbolic constant propagation through the
slice, and the result could be
 A constant: static constant
 A program segment that depends on initialization-time

inputs only: dynamic constant
 A program segment that depends on run-time inputs:

dynamic variables

2/8/06 Blackhat Federal 2006 24

Dynamic Variables

 Derive partial constraints, e.g., prefix or suffix,
“/home/httpd/html”

 Enforce the system call argument computation
path by inserting null system calls between where
dynamic inputs are entered and where the
corresponding system call arguments are used

2/8/06 Blackhat Federal 2006 25

Ordering Check Only
main

Buffer Overflow

setreuid read open stat write

setreuid

read

open

stat

write

function call

Compromised!

2/8/06 Blackhat Federal 2006 26

Ordering and Site Check
main

Buffer Overflow

setreuid read open stat write

function call

int 0x80 instruction

Compromised!

2/8/06 Blackhat Federal 2006 27

Ordering, Site and Stack Check (1)
main

Buffer Overflow

setreuid read open stat write

function call

int 0x80 instruction

2/8/06 Blackhat Federal 2006 28

Ordering, Site and Stack Check (2)

main

Buffer Overflow

exec

Stack check passes

function call

int 0x80 instruction

2/8/06 Blackhat Federal 2006 29

Random Insertion of Notify Calls
main

Buffer Overflow

exec

notify

notify

Attack
failed

function call

int 0x80 instruction

2/8/06 Blackhat Federal 2006 30

Window of Vulnerabilities

Buffer Overflow

Buffer Overflow

exec

execnotify

notify

Desired system call follows
Immediately

Argument
replacement

2/8/06 Blackhat Federal 2006 31

Prototype Implementation

 GCC 3.1 and Gnu ld 2.11.94, Red Hat Linux 7.2

 Compiles GLIBC successfully

 Compiles several production-mode network server
applications successfully, including Apache-1.3.20,
Qpopper-4.0, Sendmail-8.11.3, Wuftpd-2.6.0, etc.

2/8/06 Blackhat Federal 2006 32

Throughput Overhead

Apache

Qpopper

Sendmail

Wuftpd

PAID PAID/stack PAID/random PAID/stack
 random

4.89% 5.39% 6.48% 7.09%

5.38% 5.52% 6.03% 6.22%

6.81% 7.73% 9.36% 10.44%

2.23% 2.69% 3.60% 4.38%

2/8/06 Blackhat Federal 2006 33

However

 PAID assumes source code availability, but most
users do not have access to the source code of
their applications, especially on the Windows
platform

 What is the SCFG for Microsoft’s IIS?

 Enters the BIRD (Binary Interpretation using Run-
time Disassembly) project

 Binary PAID = BIRD + PAID

2/8/06 Blackhat Federal 2006 34

Motivation

 Many state-of-the-art solutions to software
security problem are based on program
transformation techniques

 Achilles Heel: cannot be applied to existing
executable binaries, especially for Windows PE32
binaries

 From source code to binary code:
 Static disassembly does not always work
 Binary instrumentation is non-trivial

2/8/06 Blackhat Federal 2006 35

Static Disassembly

 No guarantee for 100% recovery: no way to know for sure

 Distinguishing between instruction and data is
fundamentally undecidable

 Linear sweeping: data (e.g., jump table) could be
embedded code section

 Recursive traversal: some functions do not any explicit call
sites in the binary

 Windows DLLs are full of hand-crafted code sequences
designed to defeat reverse engineering tools

 Bottom line: about 90% coverage with absolute confidence

2/8/06 Blackhat Federal 2006 36

BIRD

 A binary analysis and instrumentation
infrastructure on the Windows platform
 Do as much static disassembly as possible

 Uncover “statically unknown” instructions through
dynamic invocation of disassembler

 Provide an API for developers to add application-
specific analysis and/or instrumentation routines

 Guarantee 100% disassembly accuracy and coverage

2/8/06 Blackhat Federal 2006 37

Architecture

2/8/06 Blackhat Federal 2006 38

Dynamic Disassembly

 Statically redirect all indirect jumps/calls to a check()
routine

 Redirect delivery of exception handlers to the check()
routine also

 In the check() routine
 Check if the target address is known or not
 If known, jump to the target; else invoke the dynamic

disassembler to disassembly the target area and jump
 Update the unknown-area list and modify indirect

jumps/calls in dynamically disassembled instructions

2/8/06 Blackhat Federal 2006 39

Binary Instrumentation

 Need to find enough bytes in a given
instrumentation point to put in a 5-byte jump
instruction

 Can use neighboring instructions only if they are
not targets of other direct jump instructions in the
same function

 Use INT 3 as a fall-back mechanism, which goes
through an exception handler to invoke check()

2/8/06 Blackhat Federal 2006 40

Performance Penalty

 Works for all programs in MS Office suite and IE

 Latency overhead

0.8%3.5%Show object headers in an EXE fileobjdump

16.7%19.0%Find a string in a 500KB filefind

2.4%6.4%List all strings in a binary filestrings

0.15%10.0%Compare two similar5MB filescomp

0.18%3.4%Encrypt a 10MB filegzip

ModifiedOriginalDescriptionProgram

2/8/06 Blackhat Federal 2006 41

Binary PAID

2/8/06 Blackhat Federal 2006 42

Throughput Overhead

2/8/06 Blackhat Federal 2006 43

Other Application: FOOD

 Goal: Ensure no dynamically injected code can run by
monitoring target addresses of all indirect branches

 Assumption: no self modifying code, thus read-only text
segment

 Approach: check the legitimacy of each instruction based
on its location rather than its content

 Intercept at all indirect jumps/calls, return instructions and
invocation of exception handlers

 Overhead: 10-25%

2/8/06 Blackhat Federal 2006 44

Conclusion
 PAID is the most efficient, comprehensive and accurate

host-based intrusion prevention (HIPS) system on both
Linux and Windows platform

 Automatically generates per-application system call policy
 Guarantee 0 false positive and almost 0 false negative
 Effective countermeasures against mimicry attacks,

 Extensive system call argument checks
 Load-time insertion of random null system calls
 Return address sequence check

 Can handle function pointers, asynchronous control
transfer, threads, exceptions, and DLL

2/8/06 Blackhat Federal 2006 45

Future Work

 Further reduce the latency/throughput overhead of
Binary PAID

 Reduce the percentage of “dynamic variable”
category of system call arguments

 Apply it to generate security policy for SELinux
automatically

 Create a counterpart of PAID for NIDS

2/8/06 Blackhat Federal 2006 46

For more information

Project Page: http://www.ecsl.cs.sunysb.edu/PAID

Thank You!

